Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.01.569227

ABSTRACT

Treating rapidly evolving pathogenic diseases such as COVID-19 requires a therapeutic approach that accommodates the emergence of viral variants over time. Our machine learning (ML)-guided sequence design platform combines high-throughput experiments with ML to generate highly diverse single-domain antibodies (VHHs) that bind and neutralize SARS-CoV-1 and SARS-CoV-2. Crucially, the model, trained using binding data against early SARS-CoV variants, accurately captures the relationship between VHH sequence and binding activity across a broad swathe of sequence space. We discover ML-designed VHHs that exhibit considerable cross-reactivity and successfully neutralize targets not seen during training, including the Delta and Omicron BA.1 variants of SARS-CoV-2. Our ML-designed VHHs include thousands of variants 4-15 mutations from the parent sequence with significantly improved activity, demonstrating that ML-guided sequence design can successfully navigate vast regions of sequence space to unlock and future-proof potential therapeutics against rapidly evolving pathogens.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL